Light exposure induces short- and long-term changes in the excitability of retinorecipient neurons in suprachiasmatic nucleus.
نویسندگان
چکیده
The suprachiasmatic nucleus (SCN) is the locus of a hypothalamic circadian clock that synchronizes physiological and behavioral responses to the daily light-dark cycle. The nucleus is composed of functionally and peptidergically diverse populations of cells for which distinct electrochemical properties are largely unstudied. SCN neurons containing gastrin-releasing peptide (GRP) receive direct retinal input via the retinohypothalamic tract. We targeted GRP neurons with a green fluorescent protein (GFP) marker for whole cell patch-clamping. In these neurons, we studied short (0.5-1.5 h)- and long-term (2-6 h) effects of a 1-h light pulse (LP) given 2 h after lights off [Zeitgeber time (ZT) 14:00-15:00] on membrane potential and spike firing. In brain slices taken from light-exposed animals, cells were depolarized, and spike firing rate increased between ZT 15:30 and 16:30. During a subsequent 4-h period beginning around ZT 17:00, GRP neurons from light-exposed animals were hyperpolarized by ∼15 mV. None of these effects was observed in GRP neurons from animals not exposed to light or in immediately adjacent non-GRP neurons whether or not exposed to light. Depolarization of GRP neurons was associated with a reduction in GABA(A)-dependent synaptic noise, whereas hyperpolarization was accompanied both by a loss of GABA(A) drive and suppression of a TTX-resistant leakage current carried primarily by Na. This suggests that, in the SCN, exposure to light may induce a short-term increase in GRP neuron excitability mediated by retinal neurotransmitters and neuropeptides, followed by long-term membrane hyperpolarization resulting from suppression of a leakage current, possibly resulting from genomic signals.
منابع مشابه
1 2 3 Title : Light exposure induces short - and long - term changes in the excitability of retinorecipient 4 neurons in
1 2 3 Title: Light exposure induces shortand long-term changes in the excitability of retinorecipient 4 neurons in suprachiasmatic nucleus 5 6 Joseph LeSauter, Rae Silver, Robin Cloues and Paul Witkovsky 7 8 Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027. 9 Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 1
متن کاملDay-length encoding through tonic photic effects in the retinorecipient SCN region.
The circadian clock in the suprachiasmatic nucleus (SCN) plays a critical role in seasonal processes by sensing ambient photoperiod. To explore how it measures day-length, we assessed the state of SCN oscillators using markers for neuronal activity (c-FOS) and the clock protein (PER1) in Syrian hamsters housed in long (LD, 16 : 8 h light : dark) vs. short days (SD, 8 : 16 h light : dark). Durin...
متن کاملRepeated administration of cannabinoid receptor agonist and antagonist impairs short and long term plasticity of rat’s dentate gyrus in vivo
Introduction: The effects of cannabinoids (CBs) on synaptic plasticity of hippocampal dentate gyrus neurons have been shown in numerous studies. However, the effect of repeated exposure to cannabinoids on hippocampal function is not fully understood. In this study, using field potential recording, we investigated the effect of repeated administration of the nonselective CB receptor agonist WIN5...
متن کاملDistribution of NADPH-diaphorase staining and light-induced Fos expression in the rat suprachiasmatic nucleus region supports a role for nitric oxide in the circadian system.
Nitric oxide serves as a messenger molecule in some neuronal systems that use glutamate as a transmitter and it has been shown that glutamate mediates the transmission of photic signals by retinal ganglion cell axons terminating in the hypothalamic suprachiasmatic nucleus, site of the circadian pacemaker in rodents. Recent experiments have demonstrated that pharmacological treatments which bloc...
متن کاملCircadian gating of neuronal functionality: a basis for iterative metaplasticity1
Brain plasticity, the ability of the nervous system to encode experience, is a modulatory process leading to long-lasting structural and functional changes. Salient experiences induce plastic changes in neurons of the hippocampus, the basis of memory formation and recall. In the suprachiasmatic nucleus (SCN), the central circadian (~24-h) clock, experience with light at night induces changes in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 106 2 شماره
صفحات -
تاریخ انتشار 2011